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Abstract—The grasping of transparent objects is challenging
but of significance to robots. In this article, a visual–tactile fu-
sion framework for transparent object grasping in complex back-
grounds is proposed, which synergizes the advantages of vision and
touch, and greatly improves the grasping efficiency of transparent
objects. First, we propose a multiscene synthetic grasping dataset
named SimTrans12 K together with a Gaussian-mask annotation
method. Next, based on the TaTa gripper, we propose a grasping
network named transparent object-grasping convolutional neural
network for grasping position detection, which shows good per-
formance in both synthetic and real scenes. Inspired by human
grasping, a tactile calibration method and a visual–tactile fusion
classification method are designed, which improve the grasping
success rate by 36.7% compared with direct grasping and the classi-
fication accuracy by 39.1%. Furthermore, the tactile height sensing
module and the tactile position exploration module are added to
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solve the problem of grasping transparent objects in irregular and
visually undetectable scenes. The experimental results demonstrate
the validity of the framework.

Index Terms—Complex backgrounds, synthetic transparent
object dataset, tactile calibration, transparent object grasping,
visual–tactile fusion.

I. INTRODUCTION

TRANSPARENT objects are common in people’s daily life,
but it is very challenging for robots to accurately detect and

grasp them. This is mainly because the appearance of transparent
objects changes drastically under different backgrounds, making
traditional visual detection prone to failure. Therefore, how to
realize the accurate and robust detection of transparent objects
toward efficient grasp has attracted tremendous interest in the
field of robotics. Representative works include the multimodal
transfer learning method [1], the plenoptic sensing approach [2],
the transparent depth information complimenting method [3],
etc. Nevertheless, these methods usually focus on the detection
of transparent objects and assume that the objects are placed
in static backgrounds with simple patterns, which is not always
the case in practice. Hence, it is of great significance to develop
a grasping method for transparent objects that can adapt to
various backgrounds, e.g., the objects placed on soft or fluid
surfaces, with complex patterns or unpredictable conditions,
such as undulating scenes, underwater, and so on.

Thanks to the development of computer vision and deep
learning, vision-assisted perception has now become a popular
and effective choice for robot interactions and environment
explorations. However, the vision-based method cannot work
well in dim, reflective, and cloudy conditions. Inspired by the
grasping behavior of humans, as shown in Fig. 1, where visual
and tactile sensations are collaboratively working toward com-
plicated tasks, a visual–tactile fusion-based framework using the
TaTa gripper [4] is proposed in this article for transparent object
grasping in complex backgrounds. Here, the tactile sensation is
utilized to compensate for the limitation of vision, which not
only largely raises the success rate of grasping by 36.7% but
also greatly improves the classification accuracy of transparent
objects by 39.1%. In addition, the framework can be extended to
cover more challenging scenes, such as irregular backgrounds or
even visually undetectable scenes. Specifically, the contributions
of this work are fourfold.
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Fig. 1. Visual–tactile fusion framework inspired by human grasping.

1) A synthetic transparent object dataset named Sim-
Trans12 K is proposed containing different styles of
backgrounds, lighting, and camera positions, which has
more complex and abundant background information than
the previous transparent object datasets, such as Clear-
Grasp [3] and Dex-Nerf [5]. Besides, to improve the
performance of Sim2Real, we propose a Gaussian-mask
method for transparent object-grasping position annota-
tion, which can better represent the position information of
transparent objects than the binary ground truth grasping
position [1].

2) For the TaTa gripper [4], a generative grasping net-
work named transparent object-grasping convolutional
neural network (TGCNN) is proposed, which can achieve
transparent object-grasping position detection in complex
backgrounds and lighting with training from the synthetic
dataset only. Meanwhile, a tactile information extraction
algorithm and a visual–tactile fusion-based transparent
object classification algorithm are developed to compen-
sate for the visual deviation [6].

3) To realize transparent object grasping in complex back-
grounds, we propose a visual–tactile fusion-based trans-
parent object-grasping framework with tactile calibration.
Besides, we add the tactile height sensing (THS) module
and the tactile position exploration (TPE) module to this
framework, which can achieve transparent object grasping
in stacking, overlapping, or even visually undetectable
scenes. Those scenes are extremely difficult and there are
only a few studies before [3], [5], [7], [8], [9].

4) To test the effectiveness of the proposed framework, we
carefully design several experiments to extensively com-
pare the performance with several state-of-the-art baseline
methods, which indicates that the proposed method has
a considerable performance improvement for transparent
object grasping and classification. Moreover, we also test
the proposed method in some highly difficult scenes, such
as stacking, overlapping, undulating, and dynamic under-
water environments, which greatly extends the application
areas of transparent object grasping.

The rest of this article is organized as follows. The related
work is reviewed in Section II. The hardware setup is detailed
in Section III. Section IV presents the synthetic data generation,

Fig. 2. Examples of transparent object dataset. (a) ClearGrasp [3]. (b) Dex-
NeRF [5]. (c) LIT [13]. (d) Light-field camera used in LIT dataset.

the grasping position detection algorithm, the tactile information
extraction algorithm, and the visual–tactile fusion-based classi-
fication algorithm. The proposed visual–tactile fusion grasping
strategy is presented in Section V. Furthermore, experimental
validations are provided in Section VI. Finally, Section VII
concludes this article.

II. RELATED WORK

A. Transparent Object Dataset

Xie et al. [10] proposed a transparent dataset Trans 10 K with
10 428 real data, but it only has two limited categories, which
was further refined to 11 fine-grained categories of transparent
objects in the dataset Trans10K-v2 [11]. Jiang et al. [12] con-
structed a real-world dataset TRANS-AFF with affordances and
depth maps of transparent objects.

With the development of powerful computer graphics sim-
ulation tools, researchers have tried to generate the synthetic
dataset of the transparent object from simulation considering
its low cost, simplicity, and efficiency. Representative works
include ClearGrasp [3], a synthetic dataset for depth-completion
tasks, Dex-NeRF [5], a synthetic dataset for transparent object
detection and localization, and LIT [13], a synthetic dataset for
light-field cameras, as shown in Fig. 2.

The implementation of transparent object grasping via
Sim2Real puts higher demands on the diversity and validity of
the dataset, so we hope that the dataset contains more transparent
object data under complex backgrounds and lightness, while
ClearGrasp and Dex-NeRF can hardly meet such requirements.
Although LIT contains more complex scenes, it contains scenes
with low brightness and is designed for light-field cameras, as
shown in Fig. 2(d). A new synthetic dataset for the transparent
object is proposed in this article. To reduce the discrepancy
between the synthetic data and the real scene, we carefully
calibrate the parameters of the cameras, lights, and backgrounds
in the simulation software to make them as consistent as pos-
sible with the real camera, which is neglected in the existing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on July 07,2023 at 10:21:05 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: VISUAL–TACTILE FUSION FOR TRANSPARENT OBJECT GRASPING IN COMPLEX BACKGROUNDS 3

transparent object synthetic dataset. In addition, we also propose
a Gaussian-mask annotation method for transparent objects.

B. Transparent Object Detection

The visual detection methods of transparent objects can be
divided into two types: physical feature-based detection methods
and deep-learning-based methods.

Traditional methods detect transparent objects based on phys-
ical features, such as deformation, reflection, and image gradient
changes. Fritz et al. [14] reported an additive latent feature model
through the assumption that the texture of transparent objects
originates from the background. McHenry et al. [15] proposed
a hierarchical support vector machine based glass edge recogni-
tion model via the background texture distortion and reflection
phenomenon at the glass edge. Maeno et al. [16] used a light-field
camera to acquire images and utilized a light-field distortion
feature to describe the distortion caused by the refraction of
transparent objects.

The development of deep learning paves a new way for
transparent object detection. Liu et al. [17] used a convolutional
neural network called single shot multibox detector for transpar-
ent object detection. Xie et al. [10] proposed a transformer-based
segmentation pipeline termed Trans2Seg. Fan et al. [18] applied
the transparent object detection to highly dynamic scenes and
proposed a recognition tracking network named TransATOM,
which can stably track the transparent objects in video.
Xu et al. [19] proposed a joint point cloud and depth-completion
method, which can complete the depth of transparent objects in
cluttered scenes. Zhu et al. [20] presented a novel framework
that can complete missing depth given noisy red, green, and
blue (RGB)-D inputs.

Deep-learning methods have demonstrated superior robust-
ness to traditional ones, especially for transparent object detec-
tion in complex scenarios, showing great application potential.

C. Transparent Object Grasping

Transparent object grasping is another challenging task. Apart
from the object position, the optimal grasping position and angle
should be considered as well during grasping. We classify trans-
parent object-grasping tasks into different levels of difficulty, as
shown in Table I, ranging from the simple case of grasping on
a plane to the extremely difficult case of grasping in dynamic
underwater environments.

For transparent object grasping, most of the works are per-
formed on planes with a simple background. For example,
Weng et al. [1] proposed a multimodal transfer learning method
for transparent and reflective object grasping. Sajjan et al. [3]
reported a transparent depth-completion method to grasp trans-
parent objects. Liu et al. [21] proposed a keypoint-based method
for six-dimensional (6-D) pose estimation of objects using stereo
image input, which can easily be applied to transparent object
grasping. Ichnowski et al. [5] rendered depth maps of transparent
objects using neural radiation fields (NeRF) to infer the geome-
try of transparent objects and perform plane grasping. Kerr et al.
[22] proposed evolving NeRF, leveraging recent speedups in
NeRF training and further extending it to rapidly train the NeRF

TABLE I
RELATED WORK ON TRANSPARENT OBJECT GRASPING

Fig. 3. Detection with RGB and depth cameras. Left: undulating scenes:
(a) RGB; and (b) depth images, Right: underwater scenes: (a) RGB and
(b) depth images.

representation concurrently to image capturing. Cao et al. [23]
proposed a fuzzy-depth soft grasping algorithm for Tstone-Soft
gripper.

Besides, grasping transparent objects in complex scenes,
e.g., glass fragments, stacking, overlapping, undulating, sand,
and underwater scenes, are more challenging but of practical
meaning. First, glass fragments are a type of object with no
fixed model, and their detection and grasping pose a significant
challenge. Because of its random shape and the presence of more
angles, the accuracy of grasping and the universality of grasping
tools are highly required, so there is almost no research on the
grasping of transparent glass fragments. For overlapping and
stacking transparent objects, their texture will be merged with the
background, so it is difficult to distinguish them. Zhou et al. [2]
proposed a GlassLoc algorithm for grasping pose detection of
transparent objects in clutter using plenoptic sensing, which
achieves transparent object grasping in stacking scenes, although
the experimental setting is simple. Lysenkov and Rabaud [24]
proposed a method that can achieve pose estimation for cluttered
transparent objects in complex backgrounds, but it applies the
pose matching method, which is only applicable to objects
within the dataset and cannot solve the grasping of transparent
fragments without regular shapes.

Second, object grasping on undulating planes is difficult with
RGB cameras because it is hard to estimate the height where the
object is placed. As shown in Fig. 3, even by incorporating depth
cameras, such a problem cannot be well solved for transparent
object grasping. The reason is mainly bifold: on the one hand, the
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depth information for transparent objects is inaccurate, and on
the other hand, undulating scenes have some shadows, overlaps,
and reflective areas, which raises more challenges for transparent
object detection. Therefore, the lack of accurate information
about transparent objects and the interference of the environ-
mental background is a difficult problem to solve, which is one
of the reasons why we use RGB images rather than depth images
to achieve transparent grasping position detection in complex
backgrounds. Sand is a special undulating scene. In addition
to the above problems, its surface is more uneven, where sand
particles of different colors will also influence the detection,
and sand is also easy to slide during the grasping process. To
our knowledge, there is still a lack of studies or experiments
for transparent object grasping on undulating scenes or sand
environments.

Third, transparent object grasping in underwater scenes is
also challenging due to the similar optical properties of water
and transparent objects. As shown in Fig. 3, even with a depth
camera, transparent objects are still undetectable in water, and
there are many reflections on the surface of the water under
the illumination of light, making things worse. To solve the
problem of underwater transparent object detection, Zhou et al.
[26] proposed the plenoptic Monte Carlo localization method
for localizing the pose of a translucent object underwater using
a Lytro first-generation light-field camera. Similarly, Oberlin
and Tellex [25] proposed a formal model for robotic light-field
photography, which can turn a calibrated eye-in-hand camera
into a time-lapse light-field camera. Although this method can
be deployed on conventional cameras, thousands of RGB images
from different angles need to be captured for one detection.
Furthermore, these methods have not been studied for some
dynamic underwater scenes with bubbles, waves, reflections,
and complex backgrounds, which are extremely difficult, and
even using a light-field camera may probably fail.

In summary, most existing studies focus on grasping trans-
parent objects with known shape in simple scenes, such as on
a plane, while several difficult scenes, as listed in Table I, are
rarely studied and still remain an open problem.

III. HARDWARE SETUP

The human hand has sensitive tactile perception because its
surface is covered with dense tactile nerves [27]. Similarly,
various tactile sensors have been designed for robots, such
as piezoelectric [28], capacitive [29], triboelectric [30], and
piezoresistive sensors [31], but the resolution is still not com-
parable to human hands. Thanks to the commercialization and
miniaturization of the CMOS image sensors, a series of tactile
detection devices based on the optical imaging are invented
and realize high-resolution sensing with low costs, e.g., Gel-
Sight [32], GelSlim [33], and FingerVision [34]. However, such
devices are mainly designed for fingertips and cannot acquire the
overall contour of the contacted object. In addition, they usually
adopted a silicone plus transparent acrylic sheet solution, which
has limited deformation capability.

To realize transparent object grasping, a universal soft gripper
named TaTa is adopted here, as shown in Fig. 4(a)–(d), which
has tactile perception on a large hemispherical surface. Details

of the TaTa gripper can be found in our previous article [4].
Meanwhile, we upgrade the previous version of the TaTa gripper
by using the camera with a larger imaging range and improving
the waterproof ability to achieve better detection performance
and durability. TaTa adopts the grasping principle of particle
jamming and vision-based tactile detection technology, using the
principle of refractive index matching to design a special solid–
liquid mixture that looks totally transparent [35], overcoming the
interference of internal particles on the internal camera. Hence,
it has large-area, high-quality tactile detection ability as well as
adaptive grasping ability.

The hardware setup is depicted in Fig. 4(b) and (c). A Re-
alSense D435i camera is fixed on the top frame as the “eye,”
which can acquire 480 × 640 image information and the TaTa
gripper is attached to the UR5 robotic arm. Two LEDs are
used to provide lighting to the platform. We divide the system
into five coordinate systems and use the center of the gripping
plane as the origin of the world coordinate system O1. First,
we calibrate the intrinsics and extrinsics of the eye camera with
a checkerboard [36] to establish the relationship between the
camera coordinate system O3 and the world coordinate system
O1. Second, since the robot arm and the gripping plane are at the
same height, the relationship between the arm base coordinate
system O2 and the world coordinate system O1 is derived by
coordinate transformation. Third, the position of the end of
the gripper in O2 can be obtained through the official program
interface of the UR5 robot arm so that the arm can be controlled
to reach the location of the transparent object captured by the
eye camera. Finally, taking the gripper center as the origin
and establishing the relationship between the tactile camera
coordinate system O5 of the tactile sensor and the coordinate
systemO4 of the gripper end, we can get the offset of the position
where the contact between the gripper and the object occurs
relative to the origin of the gripper, after which the offset is
mapped to the displacement of the end of the arm to achieve
tactile calibration.

To verify the capability of handling fragile objects, tests on
grasping an egg and a tomato with TaTa are conducted, as shown
in Fig. 4(e). Meanwhile, we upgrade the problem of the small
imaging range of the previous version of the TaTa gripper by
using the camera with a larger imaging range and improving the
waterproof ability to achieve better detection performance and
durability.

IV. METHODOLOGY

This section introduces the algorithms used in our proposed
visual–tactile fusion grasping framework. As shown in Fig. 5,
to achieve transparent object grasping, we propose a trans-
parent object-grasping position detection algorithm, a tactile
information extraction algorithm, and a visual–tactile fusion
classification algorithm, respectively. Besides, a Gaussian-mask
annotation method is also developed for our synthesized trans-
parent object dataset.

A. Dataset Generation and Annotation

The neural-network-based grasping position detection
method requires a large dataset, and hence, it is challenging
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Fig. 4. Hardware system. (A) The structure of TaTa: (a) The schematic diagram of TaTa, (b) The layout of the inside LEDs, (c) The illustration of the inside
light path. (B) Coordinate system (CS). (C) Visual–tactile fusion grasping experimental platform. (D) Tactile perception effect test: (a) Screwdriver picture, (b)
Perception result. (E) Grasping performance testing: (a) Grasp an egg, (b) Grasp a tomato.

to collect and annotate datasets manually. To tackle this prob-
lem, we adopt Blender to make a multibackground transparent
object-grasping dataset, SimTrans12 K, which contains 12 000
synthetic images and 160 real images, as illustrated in Fig. 6.
The reason to choose Blender is due to its high flexibility and
capability to simulate the key features of transparent objects,
such as surface reflections, refraction, and soft shadows.

SimTrans12 K contains six types of objects and 2000 dif-
ferent scenes. To obtain sufficiently complex and adequate
backgrounds, we cropped some images from videos containing
rich home decoration layouts and landscapes as backgrounds.
The scene setup for generating the transparent object synthetic
dataset is shown in Fig. 6(a). We use Blender 2.90 s physically
based cycles renderer with path tracing set to 256 samples pixel,
and max light path bounces set to 1024. For glass materials,
we set the index of refraction to 1.45 to match the physical
glass. In each scene, two light sources are used to illuminate the
location of the object and generate reflection spots on the surface
of the object. The maximum power of the light is 1000 W and
the minimum power is 100 W. A camera is placed above the
transparent object, and the acute angle between the camera’s
optical axis and the z-axis of the world coordinate is varied in

the range [0, π/24]. Camera intrinsics are set the same as the
RealSense D435i camera.

Based on the information obtained during rendering, ground
truth labels are generated for training. Generative models, such
as the generative grasping CNN (GGCNN) [37], rely on the
same binary ground truth generation during training. However,
binary ground truth labels treat the edge and the center of
annotation with the same weight, which is easy to make the
grasping position deviate from the optimal center and come to
the edge of the object. It can lead to a declined grasping success
rate and even damage the object. To improve the reliability of
dataset annotation, we propose a transparent object-grasping
position annotation method based on Gaussian distribution
and the transparent object mask (Gaussian-mask). Previously,
Cao et al.[38] proposed the idea of using Gaussian distribution
for object-grasping position annotation. A Gaussian distribution
rectangular box was adopted for the annotation of the gripping
position, which works well for ordinary objects. However, the
grasping position detection of transparent objects is much more
challenging since the texture of transparent objects changes with
the backgrounds. Fortunately, although the texture properties
of transparent objects may change dramatically, their boundary
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Fig. 5. Visual–tactile fusion framework for transparent object grasping. (a) Grasping position detection. (b) Tactile information extraction. (c) Visual–tactile
fusion classification.

Fig. 6. SimTrans12 K dataset. (a) Scene setup for generating the transparent object synthetic dataset using Blender. (b) Synthetic dataset of transparent objects
in different backgrounds. (c) Real dataset in different backgrounds. (d) Real dataset in different brightnesses.

information is relatively stable [10]. Therefore, instead of using
rectangular box annotation, we directly use the mask of the
transparent object itself as the grasping contour and use Gaussian
distribution to represent the optimal grasping position, which
makes full use of the boundary information of the transparent
object.

For the TaTa gripper, which achieves gripping by wrapping
the whole object, we can use the center of the transparent object
as the optimal grasping position. To make the grasping position
as close as possible to the object center, a grasping quality
distribution map that satisfies a Gaussian distribution from the
center of the annotated object is generated. In this way, the point

near the object center has a higher grasping quality than the
point away from the center, so it is easier for the gripper to
select the object center for grasping. Positioning in the object
center helps TaTa for better tactile detection and also reduces the
probability of potential damage to the object during grasping. To
make the Gaussian-mask annotation adapt to different objects
and camera positions in the scene, the two farthest points on
the object on the same x–y-plane are selected. Then, the two
points are projected onto the rendered image. The center of
the line connecting the two points is chosen as the center of
the Gaussian distribution, and half the distance between the
two points is determined as the Gaussian distribution radius.
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Fig. 7. Gaussian-mask annotation process of transparent objects.

However, the Gaussian-mask annotation method also has some
limitations. This method uses the object’s mask as the annotation
frame and is more suitable for objects whose center is located
on the object. The Gaussian-mask annotation process is shown
in Fig. 7. The object center, Gaussian distribution radius, and
Gaussian-mask labels are obtained directly from the RGB image,
which is further processed to obtain the Gaussian representation
ground truth labels. Thanks to the Gaussian-mask annotation,
the grasping network could regress to a more accurate grasping
center.

B. Transparent Object-Grasping Position Detection

Due to the unique optical properties, the appearance of trans-
parent objects is easily disturbed by the backgrounds. In many
cases, it is difficult for even humans to directly distinguish the
types of transparent objects under different backgrounds, which
makes the classification and grasping of transparent objects by
vision difficult. Therefore, we adopt the generative grasping
model, which can directly generate the grasping positions from
images without recognition and classification. The model is
expected to learn the general properties of transparent objects
and then apply them to detect and grasp unseen transparent
objects in complex backgrounds.

1) Network Architecture: Fig. 8 shows the proposed TGCNN
model, which is a generative architecture taking in a three-
channel RGB image and generating pixelwise grasps in the form
of two images. The three-channel RGB image is passed through
convolutional layers, residual layers, and convolution transpose
layers to generate two images. Each residual layer contains
two convolutional layers, two batch normalization layers, and
a shortcut connection. At the same time, the skip connections
in the network enable the network to obtain more hierarchi-
cal information fusion, which makes the network more effec-
tively combine scene information to detect transparent objects.
TGCNN has 2 145 154 parameters with a trained model size of
8.23 MB. The output image of the network includes grasping
quality and grasping radius, and these two parameters can guide
the grasping for the TaTa gripper.

2) Grasp Definition: A grasp perpendicular to thex–y-plane is
defined as gr = (p, r). The grasp is described by the projection
of the center position of the gripper p : (x, y) onto the x–y-
plane and the height h between the gripper center and the x–y-
plane in Cartesian coordinates. Since the shape of the gripper

is hemispherical, the flexibility of the gripper enables it to be
deformed. For the same gripper and object, the lower the gripper
center from the x–y-plane after contact with the object, the more
the gripper is compressed and the larger the contact area between
the gripper and the object will be.

Since the contact surface is similar to a circle, the index
grasping radius r was used to describe the contact area sizes
caused by different heights h of the gripper. The influence of
different grasping radius r on detection is shown in Fig. 9.
A scalar quality measure q, representing the chances of grasp
success, is added to the pose. To further improve the grasping
efficiency of the gripper, an adaptive height-dropping method
(AHD) is proposed. AHD can determine the distance between
the gripper and the detection surface according to the size of
the object. We use a small drop height for small objects and
use a larger drop height for large objects. Because for small
objects, a smaller drop height can make the gripper obtain
complete tactile detection information. While for a large object,
a larger drop height can obtain a more complete tactile image
of the object. The generated grasping radius is smaller when the
object detection uncertainty is large, which ensures a balance
between safety and detection efficiency when detecting in highly
uncertain environments.

Assume that we want to detect grasps through an RGB image
P ∈ Rm×n×3, with known camera intrinsic parameters. In the
image coordinate system, a grasp is described by

gi = (s, ri, q) (1)

where s = (u, v) is the center and ri is the grasping radius in
image coordinates. In order to perform the grasp in image space
on the robot, we can convert the image coordinates to the robot’s
frame of reference by the following transformation:

gr = ξRC(ξCI(gi)) (2)

where ξRC is a transformation from the camera frame to the
world frame and ξCI is a transformation from 2-D image coor-
dinates to the 3-D camera frame.

The above notation can represent multiple grasps in an image.
The collective group of all grasps can be denoted as follows:

G = (R,Q) ∈ Rm×n×2 (3)

where R and Q ∈ Rm×n contain the values of grasping radius
ri and quality measure q, respectively, at each pixel s.

Grasp candidates gi are wanted to create directly by calculat-
ing the RGB images, so a mapping φ from RGB images to grasp
map in the image coordinates was defined: φ(P) = G. From G,
the best visible grasp in the image space g∗

i = maxQ G can be
calculated, and the equivalent best grasp in world coordinates
g∗
r can be obtained as well. For the case of multiple objects

in the same scene, we will sort the visible grasps according to
the quality measure q and select the first k visible grasps (k is
manually specified).

Huber loss is used for network training, written as follows:

L
(
Gi, Ĝi

)
=

{
0.5(‖Gi − Ĝi‖F)

2, if ‖Gi − Ĝi‖1 < 1

‖Gi − Ĝi‖1,1 − 0.5, otherwise.
(4)
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Fig. 8. Network architecture of the proposed TGCNN.

Fig. 9. Influence of different grasping radius r on detection.

Here, Gi denotes the grasp candidate, which can be generated
by the network, and Ĝi is the ground truth grasp. ‖ · ‖F and
‖ · ‖1,1 represent the Frobenius and “entrywise” L1 matrix
norms, respectively.

C. Tactile Information Extraction Algorithm

To obtain the contact information between the gripper and
the object, we extract the contour of the contact area using
fully convolutional networks (FCNs). Compared with the frame
difference method [39] and optical flow method [40], the FCN-
based tactile feature extraction algorithm has stronger robustness
and can still obtain clear contact information even if the internal
optics of the sensor are changed. We acquired 160 images of the
object in contact with the gripper as a training set and annotated
the data at the pixel level, and some results are illustrated
in Fig. 10(a). After 60 rounds of training, the segmentation
accuracy achieves 98%.

D. Visual–Tactile Fusion Classification

Transparent objects have little visual information and the
surface pattern changes with the backgrounds as well as the
lighting conditions, making it difficult to classify by vision
only. To solve this problem, a vision–tactile fusion method for
transparent object classification is proposed, where RGB and

tactile images are concatenated together for classification using
GoogleNet, as depicted in Fig. 11. We collected 1200 data of six
objects with different backgrounds, such as reflections, patterns,
colors, overlapping, and stacking scenes as the training set and
600 data as the test set, as shown in Fig. 10(b).

To test the performance of the algorithm, we compare the
visual classification and visual–tactile fusion classification al-
gorithms. The visual classification accuracy is 59.3%, while
the visual–tactile fusion classification accuracy reaches 98.4%,
which increases the classification success rate by 39.1%.

V. GRASPING STRATEGY

Based on the algorithms proposed in Section V, this section
explains how to integrate them to accomplish transparent object
grasping in different scenes, which forms the high-level grasping
strategy for our visual–tactile fusion framework. We decompose
a grasping task into three subtasks, i.e., object classification,
grasping position determination, and grasping height determi-
nation. Each subtask can be conducted by vision, touch, or
fusion. Similar to humans, when vision can directly obtain the
precise position of the object, we can control the hand to directly
reach the object and complete the grasp, as shown in Fig. 12(a).
When the vision cannot accurately obtain the object’s position
information, we will use the tactile perception of the hand to
slowly adjust the grasping position after obtaining the object’s
general position information until it touches the object and
reaches the appropriate grasping position, as shown in Fig. 12(b).
For object grasping in visually limited situations, as shown in
Fig. 12(c), we will use the hand’s rich tactile nerve to search
for the position of the object in a wide range, which obviously
wastes more time but is an effective way to solve the object
grasping in these special scenes.

Inspired by human grasping strategies, we divide transparent
object-grasping tasks into three types: planes with complex
backgrounds, irregular scenes, and visually undetectable scenes,
as shown in Fig. 13. In the first type, where vision is very effective
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Fig. 10. Visual–tactile fusion classification dataset. (a) Tactile data, FCN feature extraction, and center point detection results. (b) Visual classification dataset.

Fig. 11. Visual–tactile fusion classification framework for transparent objects.

Fig. 12. Human grasping strategies in different scenes (The black curve
indicates the movement path of the hand). (a) Grasping objects in clear view.
(b) Grasping transparent objects underwater. (c) Grasping objects in visually
undetectable scenes.

and plays a key role, we use vision-first grasp. In the second
type, where vision and touch can work synergistically, we use
vision–tactile grasp. While in the last type, where vision may
fail and touch becomes dominant in the task, we use touch-first
grasp. Details of the three grasping strategies are introduced as
follows.

A. Planes With Complex Backgrounds—Vision-First Grasp

Grasping objects on a plane can be achieved by visual detec-
tion [41], [42], but the texture information of transparent objects
changes with the background, so grasping transparent objects

Fig. 13. Grasping strategies in different scenes. The orange, blue, and green
colors represent the functions of visual detection, tactile, and visual–tactile
fusion, respectively. The framework can be adapted to different scenes by
adjusting the grasping strategies.

Fig. 14. Flowchart of transparent object grasping on a plane with complex
backgrounds.

in complex backgrounds is challenging even on a plane. To
tackle this, we propose a strategy for transparent object grasping
with visual–tactile fusion, as depicted in Fig. 14, which mainly
includes three steps.
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Fig. 15. Tactile calibration grasping process. First, the gripper touches the
object, the center of the object outline does not appear in the gripper center, and
the displacement between the object and the gripper is calculated as d : (x, y).
Second, lift the gripper. Third, move the gripper with a distance of d. Fourth, the
gripper touches the object again. If the object center coincides with the gripper
center, then calibration is completed.

a) Use TGCNN to obtain the grasping position and height
of the transparent object as the target position and control the
gripper to reach the target position.

b) Use tactile information to check if the gripper contacts the
object. If not, mark it as a wrong detection point and proceed to
the next position. If yes, the tactile information will be applied to
further adjust the gripping position. Here, to get a more precise
grasping position, we propose a tactile calibration method, as
illustrated in Fig. 15. The method first uses a tactile information
feature extraction network to segment the contact area [43],
which has been introduced in Section IV. Then, use the minimum
outer circle detection algorithm to obtain the circle center of
the contact area, calculate the position relationship between the
gripper center z : (x, y) and the minimum outer circle center
t : (x, y) obtained by the tactile feature extraction d = z− t,
and control the gripper to move the distance of d. During this
stage, the tactile calibration algorithm will continue running
until the object locates in the gripper center.

c) Use the visual–tactile fusion framework to classify and
place the object at a given place. Finally, the area is marked
as detected and will not be revisited. The use of the grasp-
ing position marker prevents invalid revisiting, especially
when there are many interference areas in visual detection
results.

B. Irregular Scenes—Vision-Touch Grasp

Compared with grasping objects on planes, it is more chal-
lenging to grasp transparent objects in irregular scenes, such as
overlapping, stacking, and undulating scenes. For stacking and
overlapping scenes, it is difficult to separate two objects with
similar textures by RGB vision detection either for transparent or
nontransparent objects. And for undulating surfaces, it is difficult
to obtain the precise grasping height of the object simply by
using an RGB camera.

So, we add the THS module that uses tactile sensing to
adjust the grasp height. The implementation process is shown
in Fig. 16(a). First, we still use TGCNN to get the grasping
position of the transparent object, but the height of the object
cannot be determined. Therefore, when the gripper reaches the

Fig. 16. Transparent object-grasping process. (a) In irregular scenes. (b) In
visually undetectable scenes.

specified position, the THS module will be activated. The gripper
is controlled to keep exploring downward until it touches the
object or reaches the lowest point, and then complete grasping
the object through tactile calibration. The THS module not only
enables the grasping of objects in undulating scenes but also
solves the problem of grasping transparent objects in overlap-
ping and stacking scenes.

C. Visually Undetectable Scenes—Touch-First Grasp

Although vision is a powerful detection method, it may fail
in some scenes, such as transparent object detection in highly
dynamic underwater scenes. Because water and transparent
objects have similar optical properties, the water flow and rip-
ples will result in difficulties to detect the grasping position
by vision. For transparent objects, we define scenes, such as
highly dynamic underwater, darkness, and smoke, as visually
undetectable scenes.

To achieve grasping in visually undetectable scenes, we add
a TPE module as introduced. The implementation process is
shown in Fig. 16(b). First, it uses touch to search for the
transparent object in a specific range. When in contact with the
object, it uses THS to determine the grasping height and tactile
calibration to determine the grasping position. Finally, it applies
visual–tactile fusion for classification. Therefore, when vision is
not effective, we can use touch to obtain both the grasping height
and position, such as human grasping in the dark. The advantage
of this method is that object grasping can still be achieved even
without vision, while the disadvantage is that it is inefficient and
may fail to find the object when the exploration area is too large.

VI. EXPERIMENTS

This section presents the experimental results of the proposed
algorithms and visual–tactile fusion grasping framework. First,
to test the effectiveness of our proposed transparent object
dataset, the annotation method, and the grasping position de-
tection network, we conduct synthetic data detection exper-
iments (Exp. 1) and transparent object-grasping position de-
tection experiments under different backgrounds (Exp. 2) and
brightness (Exp. 3). Second, to verify the effectiveness of the
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Fig. 17. Synthetic dataset detection results. (a) Imagewise evaluation in unseen backgrounds. (b) Objectwise evaluation with unseen objects. (c) Multiobject
evaluation in cluttered scenes.

visual–tactile fusion grasping framework, transparent object
classification grasping experiments (Exp. 4) and transparent
fragment grasping experiments (Exp. 5) are designed. Third,
we design transparent object-grasping experiments in irregular
(Exp. 6) and visually undetectable scenes (Exp. 7) to test the
effectiveness of the framework after adding the THS module and
the TPE module. The failed trials and limitations are provided
and discussed as well.

A. Exp. 1: Object Detection With Synthetic Data

To evaluate the performance of the TGCNN algorithm, we
apply the index of grasping overlap degree (GOD) to measure
if a detection is successful, similar to Saxena et al. [44] and
Jiang et al. [45]. If a calculated grasp circle and the label
mask share an intersection (i.e., the GOD) greater than 45%,
a detection is considered to be correct.

Most of the current research articles on transparent object
grasping, such as ClearGrasp, Dex-NerF, and LIT, are based on
depth complementation and pose estimation of RGB-D infor-
mation, which cannot be directly compared with our algorithms
that are based on RGB data. To make a comparison, we consider
the currently more mainstream generative grasp networks, such
as GGCNN [37], Redmon [46], and GI-NNET [47]. Since most
of these networks are designed for parallel two-finger grippers
based on RGB-D input, modifications are needed to enable them
to operate on our proposed dataset—we change the input data
to RGB and change their output from the width and angle to the
radius.

In the experiments, we evaluate TGCNN from multiple as-
pects:

1) imagewise evaluation with unseen backgrounds;
2) objectwise evaluation with unseen objects;
3) evaluation of Gaussian representation; and
4) multiobject evaluation in cluttered scenes.

TABLE II
DETECTION RESULTS IN UNSEEN BACKGROUNDS

1) Imagewise Evaluation in Unseen Backgrounds: For trans-
parent objects, changes in the background can greatly affect their
visual features and may result in recognition errors and grasping
failures. To evaluate the performance of TGCNN, we select
six objects for training and then test the detection accuracy on
unseen backgrounds. The training set contains 4000 images and
the testing set contains 1000 images with different backgrounds
from the training dataset. Although the proposed synthetic data
rendering scheme can generate a large number of transparent
object data easily, we hope that the network can learn with not
too much data.

As a result, TGCNN successfully detects a total of 942 objects
within the test set, with an accuracy of 94.2%. The results are
compared with some currently well-known and open-source
algorithms, as shown in Table II. Accuracy (Gaussian-mask, %)
in Table II means that we use the Gaussian representation of
the label, and accuracy (Binary, %) means that we use the
binary representation of the label. Fig. 17(A) shows the detection
results of each algorithm, indicating that our algorithm has better
performance in unseen backgrounds.

2) Objectwise Evaluation With Unseen Object: Besides the
good performance under new backgrounds, TGCNN can also
achieve grasping position detection for unseen objects. To test
this, we use two objects from the dataset as the training set and
the remaining four objects as the testing set. Furthermore, we
also included four objects from the LIT dataset [13] in the test
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TABLE III
DETECTION RESULTS WITH UNSEEN OBJECTS

Fig. 18. Detection comparison between Gaussian and binary representations.

set to further guarantee the generalization of the dataset. The
training set contains 4000 images and the testing set contains
1000 images with unseen objects but the same backgrounds
as the training set. As can be seen from Table III, TGCNN
outperforms other algorithms in the detection accuracy of unseen
objects. Fig. 17(b) shows the detection results of TGCNN and
other algorithms.

3) Evaluation of Gaussian Representation: During the exper-
iments, we found that the utilization of Gaussian representation
in the annotation plays a key role in improving the detection
accuracy, either for TGCNN or other algorithms. The grasping
position detection results of each algorithm using Gaussian-
mask and binary representations are listed in two columns, as
shown in Tables II and III. As can be observed, by introduc-
ing Gaussian representation, the accuracy of all algorithms is
greatly improved compared with binary representation. With
binary representation, our algorithm does not always perform the
best because TGCNN is sensitive to the boundary, while other
algorithms are not. It can be seen from Fig. 18 that TGCNN with
binary representation locates the grasping center at the edge of
the object, resulting in an unsatisfactory initial tactile detection
position. However, with Gaussian representation, the grasping
position is guided to the center, allowing tactile calibration to
get a better initial position.

4) Multiobject Evaluation in Cluttered Scenes: Besides pre-
dicting the optimal grasping of unseen objects, the robustness
of TGCNN is also reflected in the ability to predict the grasping
of multiple objects in cluttered scenes. In the experiment, the
training set contains 4000 images with a single object, and
another 1000 images with multiple objects in the clutter are used
for testing. In each test, we randomly change the object type,
object position, camera position, and scene background in the
scene (the scene backgrounds appeared in the training set). The

TABLE IV
DETECTION RESULTS WITH REAL DATA

comparison of different algorithms is shown in Fig. 17(c). It can
be seen that, although TGCNN is only trained on a dataset with
a single object, it can effectively predict the grasping position of
multiple objects with better performance than other algorithms.

B. Exp. 2: Grasping Position Detection in Different
Backgrounds

To verify the grasping position detection performance of
TGCNN in real scenes, we select 12 backgrounds with dif-
ferent features, including 6 colored backgrounds, 4 patterned
backgrounds, and 2 scenic backgrounds, as shown in the first
row in Fig. 19. The six objects in SimTrans12 K are used for
experiments. A total of 4000 synthetic data of two transparent
objects are selected as the training set, 110 real data of six
transparent objects as the test set, which contains about 600
labels, and GOD is used to quantify the detection performance.
The performance comparison of GGCNN, Redmon, GI-NNET,
and TGCNN trained under the same dataset is shown in Fig. 19
and Table IV. The results reveal that all networks have good
detection performance under a solid colored background [see
Fig. 19(a)]. While in the patterned and scenic backgrounds [see
Fig. 19(b)], the GGCNN [37], Redmon [46], and GI-NNet [47]
algorithms produce more noise in the grasping position, whereas
TGCNN still maintains good performance.

Compared with GI-NNET, TGCNN has a larger number of
parameters. Thanks to the application of residual layers [48]
and skip layer connections [49], we can increase the network
depth while preventing the network from overfitting. In addition,
TGCNN is a grasping network specially designed for jamming
grippers, and we make some adjustments and optimizations in
the number of layers and blocks of the network, so the TGCNN
network has better detection results compared with GI-NNET.

C. Exp. 3: Grasping Position Detection Under Different
Brightness

Besides the background, the light condition is also an impor-
tant factor affecting the detection accuracy. In this experiment,
we test the impact of lightness on transparent object detection
by changing the brightness (from 151 lx to 2500 lx measured by
a Lux meter). A total of 4000 synthetic data of two transparent
objects are selected as the training set and 50 real data of six
transparent objects at different brightness as the test set. The
detection results of the four networks are shown in Fig. 20
and Table IV. From the experimental results, we can see that
the detection results of Redmon and TGCNN are relatively
stable, but Redmon has more noise. The GGCNN and GI-NNET
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Fig. 19. Comparison of the four algorithms for grasping position detection in different backgrounds. (a) Colored. (b) Patterned. (c) Scenic backgrounds.

Fig. 20. Comparison of the four algorithms for grasping position detection in
different brightness.

networks have a stable detection effect when the brightness of
the light is in the 199.9–999 lx interval. When the interval is
exceeded, the detection results will be affected, for example,
some objects in the detection results of GGCNN will not be
detected, and the detection results of GI-NNET will have more
noise information.

The experimental results show that the proposed method has
good detection performance in real environments of different
backgrounds and lighting conditions even though the network
is trained using only synthetic data. In addition, we also test the
influence of camera height and light position on the detection
accuracy. It shows that when the camera height ranges between
35 and 120 cm, TGCNN maintains high detection accuracy. And
under relatively uniform light conditions, the light position does
not have an obvious impact on the detection performance.

D. Exp. 4: Grasping and Classification on Planes With
Complex Backgrounds

To verify the effectiveness of the proposed transparent object
grasping and classification framework, grasping and classifica-
tion experiments are carried out. The selected objects are the
same as in Fig. 10, including an angled wine glass and a smooth
wine glass, a girdled water glass and a normal water glass, and a

TABLE V
EXPERIMENTAL RESULTS OF TRANSPARENT OBJECT GRASPING AND

CLASSIFICATION

medicine bottle with a textured bottom and a smooth medicine
bottle, which have slippery surfaces and similar shapes, and are
difficult to both grasp and classify.

The experimental procedure is shown in Fig. 21. Two back-
grounds are used in the experiment—the pink background,
which is relatively simple, and the moon background, which
has various colors and complex textures. We compare the per-
formance of GGCNN [37], Redmon [46], GI-NNET [47], and
TGCNN. For each algorithm, we choose 3 objects randomly
placed on the table each time and conduct 20 experiments on
each background with a total of 60 grasping experiments on
each background.

The experimental process is divided into three parts: grasping
position detection, tactile calibration, and visual-touch fusion
classification. In the grasping position detection stage, the image
is acquired using RealSense D435i, and the transparent object-
grasping position and height are output using TGCNN. After
getting to the grasping position, the gripping position will be
adjusted using a tactile calibration algorithm. After reaching the
optimal grasping position, the object will be classified using
the visual-touch fusion classification algorithm and placed in
the target location. Finally, we compare the peak value of the
output of the grasping position detection network with a preset
threshold, repeat the above operation if it is greater than the
threshold, and end the grasping if less than the threshold.

The experimental results are shown in Table V. The clas-
sification success rate in the table indicates the classification
success rate in the case of successful grasping. In addition, the
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Fig. 21. Flowchart of visual–tactile fusion-based transparent object grasping and classification.

number of tactile calibrations indicates the number of calibra-
tions performed in each experiment in the case of successful
grasping, which reflects the grasping position detection accuracy
(the number of calibrations is less when the accuracy is higher).
The experimental results show that all four networks have good
detection performance in the pure color background, while in
complex backgrounds, TGCNN has a better performance in
terms of grasping success rate and the tactile calibration number.
Even in the case of poor grasping position detection, the tactile
calibration algorithm in the framework still has a certain proba-
bility to achieve the grasping of transparent objects. In addition,
we have also compared the detection effects of visual–tactile
fusion classification with visual-only classification in the real
experiments, and obtained results similar to the algorithm in-
troduction section, with a detection accuracy improvement of
39%.

E. Exp. 5: Transparent Fragment Grasping

Once a transparent object is broken, a large number of frag-
ments will be produced, which have irregular shapes and various
sizes and are difficult to grasp. To test the effectiveness of the
visual–tactile fusion grasping framework, transparent fragment
grasping experiments are performed, suggesting that tactile
sensing has an important enhancement to the grasping success
rate.

TABLE VI
GRASPING SUCCESS RATES WITH AND WITHOUT TACTILE CALIBRATION

The transparent fragments used in the experiment are shown in
Fig. 22(a), which are some glass fragments with jagged surfaces,
further increasing the difficulty of grasping position detection.
The fragment grasping process omits the classification process
compared with Exp. 4 but places higher demands on the grasping
process, and the experimental process is shown in Fig. 22(b)–(h).
To test the tactile calibration algorithm, grasping experiments
with and without tactile calibration are performed. When tactile
calibration is disabled, the gripper will grasp directly, without
further adjustment of the grasping position. We compare the
performance of GGCNN [37], Redmon [46], GI-NNET [47],
and TGCNN. Each algorithm is tested in the yellow, grid, and
flower backgrounds, and 20 visual–tactile fusion grasps and 20
direct grasps are performed in each background.
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Fig. 22. Transparent fragment grasping experiment based on visual–tactile fusion. (a) Transparent fragments. (b) Get the grasping position and height. (c) Contact
with the object and detect the center of its contour is not in the gripper center. (d) Adjust the position of the gripper. (e) Touch the object again, whose contour
center coincides with the gripper center. (f) and (g) Grasp object. (h) Place the object in the specified position.

Fig. 23. Transparent object in complicated scenes: (a) overlapping; (b) stacking; (c) undulating; (d) sand; (e) underwater; and (f) highly dynamic underwater
scenes.

It can be seen from Table VI that, in the yellow background,
the detection accuracy remains high in direct grasping because
the grasping position can be determined more accurately by
a vision in the yellow background compared with grid and
flower backgrounds. When TGCNN is adopted as the trans-
parent object-grasping position detection network, the tactile
calibration method can improve the grasping success rate by
15%, 50%, and 45% under the yellow, grid, and flower back-
grounds, separately, and the overall grasping success rate by
36.7%, showing the feasibility of the framework for transparent
fragment grasping.

F. Exp. 6: Grasping in Irregular Scenes

Compared with grasping on a plane, it is more challenging
to grasp transparent objects in irregular scenes, such as overlap-
ping, stacking, undulating, and sand [see Fig. 23(a)–(d)], where

the grasping position and height are difficult to obtain. To solve
this problem, we add the THS module based on the previous
framework to obtain the height where the object is located by
tactile. As shown in Fig. 23(a)–(e), to verify the grasping effect
of the THS module in irregular scenes, we conduct experiments
on the grasping of transparent objects in the case of stacking
and overlapping, as well as the grasping of transparent objects
in special scenes, such as undulating surfaces, sand, and under-
water.

To demonstrate the experimental process, we designed two
representative scenes, the first with stacking and overlapping
problems, and the second with undulating areas, reflective
areas, and sand, as shown in Figs. 24 and 25. We conduct
20 grasping experiments in each scene, and the overall
success rate can reach more than 90%, which shows the
feasibility of the method for grasping transparent objects
on irregular planes. More experimental procedures can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on July 07,2023 at 10:21:05 UTC from IEEE Xplore.  Restrictions apply. 



16 IEEE TRANSACTIONS ON ROBOTICS

Fig. 24. Transparent object-grasping process in stacking and overlapping scenes. (a) Experimental setup. (b) Get the grasping position. (c) Use the THS module
to search objects and contact the first object. (d) Adjust the grasping position with the tactile calibration module and grasp the object. (e) Get the new grasping
position after completing the first object grasping. (f) Use the THS module to search objects and contact the second object. (g) Adjust the grasping position with
the tactile calibration module and grasp the object. (h) Get the new grasping position and grasp the third object.

Fig. 25. Transparent object-grasping process in undulating and sand scenes. (a) Experimental setup. (b) Get the grasping position. (c) Arrive at the first object
position. (d) Use the THS module to obtain the object height. (e) Adjust the grasping position with the tactile calibration module and use the visual–tactile fusion
algorithm to classify the object. (f) Finish the first object grasp. (g) Grasp and classify the second object. (h) Grasp and classify the third object.

found on the website https://sites.google.com/view/visual-
tactilefusion.

G. Exp. 7: Grasping in Visually Undetectable Scenes

Finally, we test transparent object grasping in highly dynamic
underwater scenes, where the object becomes visually unde-
tectable, as shown in Fig. 23(f). In this case, the touch-first
grasp strategy is applied, which incorporates the TPE module.
We assume that the object will not be moved by the water
wave. The experimental procedure is shown in Fig. 26. Through
the experiment, we find that the exploration step length (dis-
tance between two exploration positions) of the gripper has
a significant impact on the success rate of grasping, so we
conduct a comparison experiment with exploration step lengths

TABLE VII
EXPERIMENTAL RESULTS FOR GRASPING IN DYNAMIC UNDERWATER

of 5 cm, 10 cm, and 15 cm, respectively, and 20 experiments
are conducted for each step length. The results are shown in
Table VII, where the average time consumed refers to the time
consumed to successfully find the object, and the failure cases
are not counted. From the results, we can see that the smaller
the step size, the higher the success rate of grasping, but also
the more time consumed. Besides, we compare the grasping
experiments in three environments, i.e., plane, irregular, and
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Fig. 26. Transparent object grasping in highly dynamic underwater scenes. (a) Transparent object-grasping position detection results. (b)–(e) Explore the
transparent object within a specific area using tactile perception. (f) Adjust the grasping position after contacting the object. (g) Visual–tactile fusion classification.
(h) Finish grasping.

Fig. 27. Some failed grasping trials. (a) Grasping trial for two flat transparent
objects with the same height. (b) Transparent object collides with the gripper,
thus causing the object to slide.

visually undetectable scenes. In each scene, we conduct 20
grasping experiments, and the average time consumption from
the beginning to reach the appropriate grasping position is 22 s,
32 s, and 121 s (the exploration step is 5 cm in a high-dynamic
underwater scene) in three environments, respectively.

H. Failed Trials and Limitations

There are some failed trials in the experiments, as shown in
Fig. 27. The first case is to grasp two close transparent objects
with the same height. It sometimes fails mainly because such
transparent objects have not only the same texture but also
similar height information. The second case is that if the grasping
position detection error is close to the radius of sensing of the
gripper, the edge of the gripper will easily collide with the
transparent object and cause the object to slide. In this case,
the grasping may also fail. However, as long as the deviation of
the detected gripping position from the actual gripping position
do not exceed the radius of the gripper, almost no slipping and
failure will occur.

VII. CONCLUSION

To solve the challenging problem of detecting, grasping, and
classifying transparent objects, in this article, a visual–tactile
fusion framework based on the synthetic dataset was proposed.
First, we used the Blender simulation engine to render synthetic

datasets rather than manually annotated datasets. Besides, we
used Gaussian mask instead of the traditional binarized anno-
tation to make the generation of the grasping position more
accurate. To achieve grasping position detection for transparent
objects, an algorithm named TGCNN was proposed and multiple
comparative experiments were conducted, which show that the
algorithm can achieve good detection under different back-
grounds and lighting conditions even when trained with only
synthetic datasets. Considering the grasping difficulty caused
by the limitation of visual detection, we proposed a tactile cali-
bration method combined with the soft gripper TaTa to improve
the grasping success rate by adjusting the grasping position
with tactile information. The method improved the grasping
success rate by 36.7% compared with vision-only grasping.
Furthermore, to solve the classification problem of transparent
objects in complex scenes, a transparent object classification
method based on visual–tactile fusion was proposed, which
improves the accuracy by 39.1% compared with the vision-
only-based classification. In addition, to achieve transparent
object grasping in irregular and visually undetectable scenes,
we proposed the THS and TPE modules, which can compensate
for the problem of transparent object grasping in the absence
of visual information. Extensive experiments were designed
systematically and the results verified the effectiveness of the
proposed framework in various complex scenarios, including
stacking, overlapping, undulating, sand, underwater scenes, etc.
We believed that the proposed framework can also be applied to
object detection in low-visibility environments, such as smoke
and murky underwater, where tactile perception can compensate
for the shortcomings of visual detection and improve classifica-
tion accuracy by using visual–tactile fusion.
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